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ABSTRACT

The paper presents a general symbolic method for generating the

complex hybrid matrix necessary for computing the periodic or

nonperiodic steady�state response of a nonlinear analog circuit

driven by multitone signals. This method is remarkable by its great

efficiency and generality, and it is very useful in frequency�domain

approach based on harmonic balance and least square approxima�

tion. For the general case of the nonperiodic steadystate response

there are three basic methods: frequency�domain approach based

on Voltera series; time�domain approach and a frequency�domain

approach based on harmonic balance and least square approxima�

tion. The last one is significantly more efficient when the total num�

ber of nonlinear resistors, inductors and capacitors is significantly

less than the total number of linear inductors and capacitors in the

circuit, as is often the case in practice.
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I. Introduction

For the general case of the nonperiodic steady-
state response there are three basic methods: (1)
frequency-domain approach based on Voltera series
[1,10-12]; (2) time-domain approach [2,11-12], and
(3) a frequency-domain approach based on harmonic
balance and least square approximation [3]. The last
one is significantly more efficient when the total
number of nonlinear resistors, inductors, and
capacitors is significantly less than the total number of
linear inductors and capacitors in the circuit, as is
often the case in practice.

This method requires the following steps: first – all
nonlinear circuit elements and independent sources
will be “extracted” from the circuit to the terminals, so
that the resulting linear n-port N will contain only
time-invariant circuit elements (resistors, inductors,
capacitors, linear-controlled sources etc.); next – we
must develop a frequency-domain analysis (ac
analysis) of the substituted linear and time-invariant
subcircuit (obtained by corresponding substitution of
the nonlinear circuit elements with voltage or current
sources) and an analysis based on harmonic method
coupled with the least square approximation of the
nonlinear subcircuit.

The frequency-domain (ac analysis) of the linear
substituted n-port N can be efficiently implemented by
computing the symbolic hybrid matrix corresponding
to this subcircuit for each frequency ω̂k . The method
presented in this paper to generate the complex hybrid
matrix for each frequency, necessary for calculating
the periodic or not periodic steady-state response of a
nonlinear circuit of great complexity, driven by multi-
tone signals, is a very useful tool.

II. Frequency–domain analysis of nonlinear analog
circuits driven by multi-tone signals

Let us consider the general case when the circuit
contains nonlinear elements – resistors, inductors,
capacitors, independent voltage and current sources
having a dc component and m multi-tone frequencies
ω1 ,ω2 ,...,ωm , and linear circuit elements.

Let us extract all nonlinear elements and all
independent sources to the ports. The nonlinear
elements on the left ports are described as follows:
voltage-controlled resistors: iG = îG u( G ,)  voltage-
controlled capacitors: uC( )qC = q̂C , flux-controlled

inductors: iΓ îΓ= ϕϕϕϕΓ( ), while the nonlinear elements
on the right ports are described by the equations:
current-controlled resistors: iR( )uR = ûR , charge-
controlled capacitors: qS( )uS = ûS , current-
controlled inductors: ϕϕϕLϕ = ϕ̂ϕϕϕL iL( ) .

The linear n-port N may contain any time-invariant
circuit element as: resistors, inductors, capacitors,
linear-controlled sources etc. Substituting all the
nonlinear elements from the left side by ideal voltage
sources and all the nonlinear elements from the right
side by ideal current sources, we obtain a linear and
time-invariant circuit.

The vector of the unknowns has the following
form:

t( ) [u t
G t( )= ,u t

C t( ), Γ t( ),i t
R t( ),q t

S t( ),i t
L t( )]tx ϕϕϕϕ .     (1)
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Expression (2) can be interpreted as a generalized
finite Fourier series, where the frequency components
include not only harmonics, but also intermodulation
frequencies

d
ˆ k ==== m1k ω1 ++++ m2k ω2 ++++ ...ω ++++ m pk ω p ,   (3)

whith mik, i =1,2,…,m, satisfying the constraint

m1k ++++ m2k ++++ ..++++ mmk ≤≤≤≤ p ,

where p is the highest order of the frequency
components considered (the components beyond this
order are negligible).
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For a given p, M represents the set of all frequency
components satisfying the inequality constraint (4).

The steady-state response of the linear and time-
invariant subcircuit, computed by frequency-domain
techniques (ac analysis) with respect to the unknown
Fourier coefficients x0 , x2k−−−−1 , x2k ;  k ====1,2,...,M , is:
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The steady-state response of the nonlinear
subcircuit in terms of the same unknown, can be
expressed as:

t( )= b0 (x) ( ) ( )( ⋅sinω̂ )∑
=

ω̂k t ++
M̂

k
k t

1
b2k −1 x ⋅cos b2k xy'

  (6)
In Eq. (6) b x( ),b − x( ),b k x( ),2120 k k = 1,2,...,M̂ are
generalized Fourier coefficients of y’(t), which depend
on the x0 ,x2k −1 ,x2k ,  k = 1,2,...,M , and

M̂ ≥ M includes in steady-state response of nonlinear
subcircuit all new frequency components generated by
the nonlinearities.

In order to compute the coefficient vector b(x) we
may apply the Discrete Fourier Transformation
(DFT), if y’(t) is a periodic response or the least
square method if it is not periodic [3].

Having the two responses y(t) and y’(t) expressed
in terms of the unknowns x(t) we do the last step of
the algorithm. From the substitution theorem and the
method of harmonic balance it results that the
coefficient ck of each frequency component ω̂k of
y t( )− y' t( )  is equal to zero. Because each coefficient

ck is a function of the 2M+1 unknown Fourier
coefficients x0 ,x2k−1 ,x2k ,  k = 1,2,...,M , for each
nonlinear element we will obtain 2M+1 independent
nonlinear algebraic equations:
c0 x( ) = 0,  c1 x( ) = 0,  .... , c2M x( )= 0.      (7)

That means a total number of n(2M+1) equations,
where n is the total number of nonlinear elements, that
can be expressed into a compact form by a nonlinear
algebraic equation:
Fx + S − b x( )= 0 .    (8)

This equation can be solved using the Newton-
Raphson algorithm obtaining the independent
variables x0 ,x1 ,...,x2M  from equation (2). The first
two terms of the equation (8) are obtained by ac

analysis of the linear substituted subcircuit. Our main
contribution in this paper is to develop an efficient
method to compute these terms; in other words to
compute the hybrid matrix of the substituted linear n-
port N.

III. Generation of the hybrid matrix of the linear
subcircuit at frequency ω̂k

For a given nonlinear circuit a special tree -called
the normal tree (NT)- is chosen [4,7,9]. The normal
tree elements are selected in this strict order: all ideal
independent or/and controlled voltage sources; all
nonlinear elements extracted on the left side – called
nonlinear elements of type one (the associated
variables will have the subscript 1); linear capacitors,
resistors, and inductors. The corresponding cotree will
contain: all ideal independent or/and controlled
current sources; all nonlinear elements extracted on
the right side – called nonlinear elements of type two
(the associated variables will have the subscript 2);
linear capacitors, resistors, and inductors. The NT will
not contain independent or controlled current sources.
Let T be a normal tree and L its corresponding cotree.

v s

Remark 1. When the controlling variables of the
controlled sources are associated to the linear
resistors, capacitors, inductors or they are voltages of
the nonlinear elements of type one respectively
currents of the nonlinear elements of type two, these
variables can be simple expressed at each frequency
ω̂k , starting from their constituti e equation , in
respect of the independent variables (U1_ k , I 2 _ k ) and

of the input quantities (E k J k ), .
Applying the superposition theorem in complex it

results at each frequency ω̂k :
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where, for example, B1_ k ,2 _ k (A2 _ k ,1 _ k ) represents
the matrix of the complex current (voltage) gains of
the nonlinear elements of type one (two) in respect of
the nonlinear elements of type two (one), and

2 _ kU1_ k (I ) is the complex voltage (current) vector
of the nonlinear elements of type one (two). The
meaning of the other variables results from their
subscripts.
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Denoting:
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the equation (9) becomes:
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In order to extract the frequency ω̂k from the
unknown vector, we have to do the following

( ) notations:
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Now the linear and time-invariant response of
ort N can be expressed by the explicit equation:
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The characteristic equations of the linear circuit
elements included both in tree and in cotree, for each
frequency ω̂k , are:

Zt _ k ,Zt _ k ,  respectively I Zt _ kZt _ k = Y t _ k U= Z t _ k IU

Zc _ k ,Z c _ k ,  respectively I Zc _ kZ c _ k = Y c _ k U= Z c _ k IU

where
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In equation (9) the state variables 

and the complementary state variables 
can be expressed as:
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(a)
(b

The substituted circuit diagram.

Applying the computing program, we obtain the
complex hybrid matrix in the following form:
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The source vectors have the following expressions:
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V. Conclusion

The paper presents a simple method to generate the
complex hybrid matrix and the complex source
vectors, in symbolic form, for the nonlinear circuit
driven by multi-tone signal analysis. This is very
useful for steady-state response computation and it

may be successfully integrated in the frequency-
domain approach based on harmonic balance and least
square method. The method is remarkable by its great
efficiency and generality.

where: i1_ 0 ,u2 _ 0  represent the dc unknowns which
will be calculated from the dc analysis;

R I R IX1_ k ,X1_ k ,X2 _ k , and X2 _ k  are the unknowns of

the ac analysis corresponding to the frequency ω̂k
and they are defined by (17); the submatrices F ij _ k

are obtained from the submatrices H ij _ k  multiplying

by jω̂k  the components corresponding to the third
row of X1_ k  or the second row of X 2 _ k . Equation
(18) contains the first two terms of the equation (8).

We have implemented the above algorithm in a
very efficient and flexible computing program that
automatically generates the normal tree, the hybrid
matrix and the source vector. Then it performs the
frequency-domain analysis of the linear substituted n-
port N for each frequency ω̂k .

IV. Example

Let us consider the nonlinear circuit represented in
Fig.1,a where: i = u( ),q = q̂ u( ) ϕ = ϕ̂3 i( 3)3222111 andî .
Substituting the nonlinear circuit elements by ideal
independent sources, according to the procedure
described in Section II, we obtain the linear circuit in
Fig. 1, b. The normal tree is made up of the branches:
{ E 4 _ k ,E8 _ k ,E1_ k ,E 2 _ k }, and the corresponding
cotree contains the branches:
{ J 3_ k ,J 5_ k ,J 9_ k ,Z 6_ k ,Z 7 _ k }.
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