MOBILE SOFTWARE PLATFORM FOR RADIO INFORMATION SYSTEMS STATISTICAL MODELING

Alexander A. Totilas,
Department of Nanotechnology in Electronics, Kazan National Research Technical University named after A.N. Tupolev-KAI, KNRTU-KAI,Kazan, Russia;
German-Russian Institute of Advanced Technologies (GRIAT), totilas.aleks@gmail.com

Renat F. Zaripov,
Department of Nanotechnology in Electronics, Kazan National Research Technical University named after A.N. Tupolev-KAI, KNRTU-KAI, Kazan, Russia;
German-Russian Institute of Advanced Technologies (GRIAT), rfzaripov@kai.ru

Marat M. Fatykhov,
Department of Nanotechnology in Electronics, Kazan National Research Technical University named after A.N. Tupolev-KAI, KNRTU-KAI, Kazan, Russian Federation;
German-Russian Institute of Advanced Technologies (GRIAT), mmfatykhov@prof.kai.ru

DOI: 10.36724/2664-066X-2020-6-4-2-10

SYNCHROINFO JOURNAL. Volume 6, Number 4 (2020). P. 2-10.

Abstract

For the static research purposes in the field of radio signals reception under freely fluctuating interference conditions, specialized software for the Android platform based on the Kotlin language has been developed using. The program design allowing to work with both the information recorded by the radio receiver analog system and the signals obtained using the simulation model. CDMA system operation under Gaussian white noise and chaotic pulse interference conditions has been simulated. The dependences of the bit error probability on additive radio channel effects of a different nature were obtained. The work originality is an attempt to implement a software-defined binary signal processing system on an accessible platform.

Keywords: software defined radio, chaotic pulse interferences, code division multiple access, the clean architecture, mobile platform.

References

[1]     Fajzullin, R.R. (2011), An integrated approach to solving the mobile infocommunication systems signals processing multiprocessor devices structural synthesis problem [“Kompleksnyj podhod k resheniyu zadachi strukturnogo sinteza mul’tiprocessornyh ustrojstv obrabotki signalov mobil’nyh infokommunikacionnyh sistem”] Nelinejnyj mir, Vol. 9. No 2, pp. 78-85.

[2]     USB Implementers Forum, Inc. (2019). USB 3.2 Specification Language Usage Guidelines from USB-IF. [online] Available at: https://www.usb.org/sites/default/ files/USB_3_2_Language_Product_and_Packaging_Guidelines_FINAL.pdf [Accessed 6 Dec. 2019].

[3]     StatCounter (2020). Mobile Operating System Market Share Wordwide (1999-2020). [online] StatCounter Global Stats. Available at: https://gs.statcounter.com/os-market-share/mobile/wordwide [Accessed 10 Jun. 2020].

[4]     Martin, R.C. (2019). The Clean Architecture. [online] Cleancoder.com. Available at: https://blog.cleancoder.com/ uncle-bob/2012/08/13/the-clean-architecture.html.

[5]     Nadeev, A.F., Podkurkov, I.A. (2015), “Adaptive estimation of non-Gaussian interference distribution parameters based on the application of the EM algorithm and its modifications”, [“Adaptivnaya ocenka parametrov raspredeleniya negaussovskih pomekh na osnove primeneniya EM-algoritma i ego modifikacij”] Nelinejnyj mir, Vol.13. No 8. pp. 64-72.

[6]     Kadushkin, V. V. (2016), “CDMA systems non-Gaussian channel optimal receiving algorithm considering intersystem interference.” [“Algoritm optimal’nogo priema v negaussovskih kanalah CMDA sistem s uchetom vliyaniya vnutrisistemnyh pomekh”], Zhurnal radioelektroniki, No11, available at: http://jre.cplire.ru/jre/nov16/index.html.

[7]     Fajzullin, R.R., Kadushkin, V.V., Zaripov, R.F. (2015), Poly-Gaussian algorithm for mobile communication systems channels joint demodulation-decoding [Poligaussovskij algoritm sovmestnoj demodulyacii-dekodirovaniya v kanalah mobil’nyh sistem svyazi] Nelinejnyj mir, Vol.13. No 8, pp. 4-9.

[8]     Kadushkin, V.V., Fatyhov, M.M., Zaripov, R.F. (2016) “Sufficiency of a poly-Gaussian approximation of arbitrary probability distributions in the communication systems with mobile objects radio links”, New Technologies, Materials and Equipment of the Russian Aerospace Industry: All-Russian Scientific and Practical Conference with International Participation, Collection of reports. Vol. 2 [“O dostatochnosti poligaussovoj approksimacii proizvol’nyh veroyatnostnyh raspredelenij v radioliniyah sistem svyazi s podvizhnymi ob’ektami.” Novye tekhnologii, materialy i oborudovanie rossijskoj aviakosmicheskoj otrasli: Vserossijskaya nauchno-prakticheskaya konferenciya s mezhdunarodnym uchastiem. Sbornik dokladov. Vol 2] Izd-vo Akademii nauk RT, Kazan, pp. 521-523.

[9]     Sklar, B. (2016). Digital communications: fundamentals and applications. Upper Saddle River, Nj: Prentice Hall Ptr.

[10]  Lerner, I.M., Fayzullin, R.R. and Chernyavskii, S.M. (2018), “To a Matter of Increasing the Spectral Efficiency of Phase Radio-Technical Data Transmission Systems Operating under Strong Intersymbol Interference”, Russian Aeronautics. Vol. 61, No.1, pp. 120-126.

[11] Zaripov R.F., Fayzullin R.R., Fatykhov M.M. and Kaduskin V.V. KNRTU-KAI. (2017), Programma dlya modelirovaniya algoritmov obrabotki signalov v mobil’nyh sistemah svyazi [A program for simulation of signal processing algorithms in mobile communication systems], Russian Federation, Patent № 2017615223.